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Abstract
The difficulties that a neural network faces when trying to learn from a quasi-
periodic time series are studied analytically using a teacher–student scenario
where the random input is divided into two macroscopic regions with different
variances, 1 and 1/γ 2 (γ � 1). The generalization error is found to decrease
as εg ∝ exp(−α/γ 2), where α is the number of examples per input dimension.
In contradiction to this very slow vanishing generalization error, the next output
prediction is found to be almost free of mistakes. This picture is consistent with
learning quasi-periodic time series produced by feedforward neural networks,
which is dominated by enhanced components of the Fourier spectrum of the
input. Simulation results are in good agreement with the analytical results.

PACS numbers: 05.20.−y, 05.45.Tp, 87.18.Sn

1. Introduction

Forecasting future events based on current given data has fascinated people throughout history.
In modern research, different methods taken from a variety of fields are employed for this
task [1]. Time series that are produced by neural networks have lately been studied in the
framework of the statistical physics field [2–6]. One of the novel findings regarding time
series produced by neural networks is concerned with series produced by perceptrons with
continuous activation function. It was found that creating a sequence using a continuous
activation function could result in a quasi-periodic sequence (QPS), in some range of the
parameters. Trying to learn a QPS by a similar network, a perceptron with the same activation
function, results in poor learning, i.e. a student trained on QPSs obtains very little information
about the teacher. However, a host of simulation results covering most of the parameter space
show that the student who learned only partially can predict the same sequence over many
steps ahead [5, 6].

In this paper we identify the reasons for good and poor teacher–student learning neural-net
time series. We suggest an explanation by presenting an analytical solution of a model that
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contains a student attempting to learn the teacher’s sequence. Both teacher and student are
the simplest archetype of feedforward neural networks, the perceptron, and are given the same
input which is composed of two regions with different variances (see figure 2). The features
of the student, the teacher and the sequence described in the model are very similar to those
in the case of learning a time series produced by the teacher, hence the model illuminates the
above mysterious partial learning.

Besides the relevance of our model to time series, it is also relevant to the question of
what is the space distribution of input that performs poor learning. Poor learning is found
in training real data consisting of input with different variances. We present an analytical
survey of learning scenarios with inputs that do not cover the whole space, only a subset;
an instance is the finding procedure for the native state of a protein which is mapped onto a
perceptron-learning problem where the input represents the contact energy and the hydrophobic
energy [7].

In the following we first describe the features that are typical of sequences derived by neural
networks. In particular, we describe and formulate the quasi-periodic orbits in section 2. In
section 3 we present on-line learning results where the input is the time series. We concentrate
on the teacher–student scenario [8] in the perceptron for simplicity, where the same behaviour
applies to multilayer networks as well. After describing the findings concerning this learning
task, we suggest an explanation for the learning phenomenon by introducing a model that
imitates the features indicated above. We present an analytical study of the model in section 4
and conclude with a comparison and discussion about the similarities between the learning
process in the model and the process of learning time series in section 5.

2. Quasi-periodic orbits

The general form of the perceptron rule generating a sequence is as follows:

St
out = g


β

1√
N

N∑
j=1

WjS
t
j


 (1)

where g is a continuous transfer function, W is an N-dimensional weight vector and β is the
gain parameter. The input vector at time t + 1 is obtained by

St+1
1 = St

out St+1
j = St

j−1 j = 2, . . . , N. (2)

A well-known fact in contemporary research in such systems is that the gain parameter has a
major impact on the stationary solution. For all continuous functions and small gain parameter
the stationary sequence is given by the trivial solution, St

out = 0. The first nontrivial solution
for larger β is quasi-periodic. In the case of a non-monotonic function, there is another
transition to a robust chaos phase at large β [4]. In the discussion below we concentrate on
the quasi-periodic solutions.

A quasi-periodic solution is the solution of equation (1) above some critical value. A quasi-
periodic solution means that the solution at each step changes and one cannot find one point in
the return map—the space that is defined by St

i versus St
i−1—that satisfies the update equations.

However, there is a certain line in the attractor dimension that the solutions are confined to
(see [4–6] for more details). Such a line indicates problems in learning. In particular,
for large dimensions N, batch learning does not work well for QPS generated by a teacher
perceptron [5].
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Figure 1. Fourier spectrum of a perceptron weight vector CK, N = 100 (solid line); the averaged
Fourier spectrum of the sequence produced with β = 0.19 and 20 different initial conditions
(dashed line); and the averaged Fourier spectrum of the weight vector of a student that tries to
learn, at the beginning, α = 0 (circles) and at α = 50 (stars). Inset: simulation results of averaged
overlap between the teacher and the student above, as a function of α.

3. On-line learning

Traditional on-line learning includes an input set that changes with time. Usually the input
set is generated at random. In this section we study the case where the time series is taken as
an input set and in section 4 we take a specific correlated set as the input set. In each time
step the teacher generates an output which is given to the student in addition to the input.
The parameter α counts the time steps or equivalently the number of examples given and it
is rescaled by the input dimension, α = t/N . In the following, to simplify the analytical
presentation we use ‘sine’ as a representative transfer function, and β is chosen to be in the
intermediate region, where the solution is quasi-periodic.

We exemplify the phenomenon of partial learning by plotting results of a specific
simulation with β = 0.19 and N = 100 (see figure 1). The sequences are initiated at
random and the teacher is taken in the special case of enhanced dominant components in the
Fourier spectrum where the special learning phenomenon is easy to present. After the transient
to the typical attractor occurs we start updating the student, according to the gradient descent
method [8]. This procedure is repeated 20 times with different initial input and student weight
vector. In figure 1 the Fourier spectrum of the teacher weight vector is plotted (solid line).
The average of the Fourier spectrum derived from the stationary part of the sequences (dashed
line) and the student weight vectors, at α = 0 (circles) and α = 50 (stars), are given.

The possibility of learning the weights of the perceptron that produce QPSs as well as
the ability to predict its next outputs, the future sequence, are the main issues addressed in
this paper. The ability to learn the weights is measured by the correlation between the two
vectors, ρ = WS · WT /(‖WS‖ ‖WT ‖), where WT (WS) is the teacher (student) weight vector
and ρ = 1 indicates perfect learning. The development of the overlap between student and
teacher in the above-mentioned specific example is given in the inset of figure 1 (solid line).
As can be seen in the plot, the learning time series is characterized by two different regions:
at the beginning, in the small α regime, the rate of learning is fast, whereas in the second
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Figure 2. A sketch of a perceptron that receives input which is divided into two parts, εN and
(1 − ε)N , where the second moments of the random input are 1 and 1/γ 2, respectively.

regime, for large α, the increment of the overlap has slowed down. These two regions are
directly connected to the two different regions in the Fourier spectrum, the enhanced range,
where the input spectrum is enlarged in the region where the teacher components are learned,
as opposed to the other region, where the input spectrum is not enlarged and the student has
not succeeded in learning the teacher components.

Recent results [5] based on simulations show that despite the difficulties in learning
the weight vector of the teacher, the student can infer the successive output fairly well. A
quantitative measure of the prediction error one step ahead is given by

εp = 〈∣∣StT
out − StS

out

∣∣〉
t

(3)

where the indices T/S stand for the teacher/student output, respectively, and the average, 〈〉t ,
is taken over the sequence in the stationary part at different times.

We claim that this result pertains to the Fourier spectrum of the perceptrons and the input.
Since the Fourier transform of the generated sequence is dominated by certain values of K,
which are the largest in the Fourier spectrum of the teacher weight vector, the student is limited
to learning only those components. Since the largest components of the student weight vector
in the Fourier spectrum, after the learning process is carried out, are those typical of the specific
sequence, the student and the teacher will produce very similar sequences. Having input which
is largely enhanced in a fraction of the components in the Fourier spectrum (compared to the
other components) is the reason for having a learning curve comprising two regions.

Therefore, we present a model that contains such enhancement (see figure 2). Learning in
the Fourier spectrum—learning the Fourier components by using the Fourier transformation of
the input set—is equivalent to learning in the regular input space. Hence, having a model with
enhancement in the regular spectrum is an equivalent representation of the situation described
above. This simplification enables analytical study of the unusual learning phenomenon.

4. Toy model

This model contains an random input vector, ξ, that has two different regions. The first
moments of both regions equal zero whereas the second moments are 1 and 1

γ 2 , respectively,

ξi =
{±1 1 � i � εN

± 1
γ

otherwise.
(4)

The output S is calculated according to the rule

S = sin

(
WT · ξ√

N

)
. (5)
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At each time step µ the student receives the pattern {ξµ, Sµ}, and tries to learn the teacher’s
quantities according to the gradient descent method [8]. The learning rule in the case of ‘sine’
activation function is (see [9])

WS(µ) = WS(µ − 1) − η√
N

[sin y(µ) − sin x(µ)] cos x(µ)ξ(µ). (6)

Here x(µ)/y(µ) are the student’s/teacher’s local fields in the µth step (where x = x1 + x2 and
y = y1 + y2),

xi = 1√
N

∑
i∈Vi

WS
i ξi yi = 1√

N

∑
i∈Vi

WT
i ξi (7)

and i = 1, 2 where V1 = 1, . . . , εN , and V2 = εN + 1, . . . , N .
The macroscopic order parameters are the overlaps between teacher and student and the

student’s norm in each region

Ri = 1

‖Vi‖
∑
i∈Vi

WS
i WT

i Qi = 1

‖Vi‖
∑
i∈Vi

WS
i WS

i (8)

where ‖V1‖ = εN and ‖V2‖ = (1 − ε)N . For simplicity we assume that the teacher weight
vector is normalized, ‖WT ‖ = N .

Since each region of the input is taken to be extensive in N, it is possible to derive
analytical equations that describe the development of the above-mentioned order parameters
[8]. The equations over the order parameters are derived by multiplying equation (6)
by the teacher weight vector and the student weight vector, respectively, and taking the
summation in each region separately. The result is coupled update equations of the form
Ri(µ + 1) = Ri(µ) + FR

i (x, y)/N and Qi(µ + 1) = Qi(µ) + F
Q

i (x, y)/N , where F is some
function over the local fields and i = 1, 2 (see [8] for more details about the derivation of
these standard equations). The next step is to take the average over the local fields. This toy
model does not have the regular joint probability distribution. In this case the joint probability
distribution is composed of two independent distributions

P(x, y) = P(x1, y1|R1,Q1, ε)P (x2, y2|R2,Q2, ε, γ ). (9)

Each one of the joint probability distributions is calculated according to its correlation matrix

¯̄C1 =
(

ε εR1

εR1 εQ1

)
¯̄C2 =

( 1−ε
γ 2

1−ε
γ 2 R2

1−ε
γ 2 R2

1−ε
γ 2 Q2

)
. (10)

We derived the equations of motion over the four order parameters:
dR1

dα
= η

2
[(R1 + 1)A+ − (R1 − 1)A− − 2R1C]

dQ1

dα
= η[(R1 + Q1)A+ − (Q1 − R1)A− − 2Q1C] +

η̂

8
dR2

dα
= η

2γ 2
[(R2 + 1)A+ − (R2 − 1)A− − 2R2C]

dQ2

dα
= η

γ 2
[(R2 + Q2)A+ − (Q2 − R2)A− − 2Q2C] +

η̂

8γ 2

(11)

where

A± = e
− 1

2 [ε(Q1±2R1+1)+ 1−ε

γ 2 (Q2±2R2+1)]

B± = e
− 1

2 [ε(1+9Q1±6R1)− 1−ε

γ 2 (1+9Q2±6R2)]

C = e
−2[εQ1+ (1−ε)

γ 2 Q2]
D = e

−2[ε+ (1−ε)

γ 2 ]

η̂ = η2
(
3 − 2A− + 2A+ − A4

− − A4
+ − 2B− + 2B+ + 2C − C4 − 2D

)
.

(12)
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Figure 3. Analytical results of the overlaps ρ1 (dot-dashed line), ρ2 (dashed line) and ρ (solid
line), as a function of α for γ = 40 and ε = 0.2. Simulation results (symbols) are averaged over
ten different runs with N = 1000. Error bars are smaller than symbols.

The transformation to two order parameters that represent the overall overlaps is
straightforward.

The normalized overlaps, ρi = Ri/
√

Qi , and the overall overlap, ρ = ερ1 + (1 − ε)ρ2,
as a function of α for the case γ = 40, ε = 0.2 and η = 1 derived from equations (11),
are plotted in figure 3. The initial conditions are Q1 = Q2 = 0.5, R1 = R2 = 0. The
simulation results (symbols) are averaged over ten different runs with N = 1000. One can
see good agreement with the analytical results derived from the equations above. Indeed
the performance of the second regime, ρ2, is very slow and therefore the overall overlap, ρ,
evolves slowly too.

The generalization error, εg , which is calculated by averaging over random inputs is
exactly the same as for the simple perceptron, [9]. The prediction error of one step ahead,
equation (3), is equivalent to calculating the error the student will produce having the special
input, equation (4). Employing equation (9) for the average over the inputs yields

εp = 1
2

[
1 − A− + A+ − 1

2 (C + D)
]
. (13)

It is simple to verify that within the limit of large γ , when R1 → 1 and Q1 → 1,
equation (13) depends merely on the asymptotic of the first region quantities, εp ∼
ε[(1 − R1)(1 + e−2ε) − (1 − Q1)(1 + 3 e−2ε)/2]/2. Note that this model is characterized
by the same discrepancy as in the case of time series prediction; the prediction error does
vanish even though the generalization error is not small.

In figure 4 the generalization error (solid line) [9] and the prediction error (dashed line)
equation (13), are plotted in the case of γ = 40 and ε = 0.2. One can see that although
the student learned poorly (for a large number of examples ρ ∼= 0.2, εg

∼= 0.3), the prediction
error is almost zero since the learning in the enhanced region is almost perfect. Simulation
results (symbols) for N = 1000 and averaged over ten samples are in good agreement with
the analytical curves (error bars are smaller than the symbols).

The generalization error decays to zero exponentially. The rate of the decay is
given by linearizing equations (11) and is governed by the smallest absolute eigenvalue,
ln εg ∝ −min |λ|α, [8]. The smaller the absolute eigenvalues the slower the decay to perfect
generalization. The eigenvalues that determined the rate of convergence in the above specific
example are {−1.5227,−0.5670,−0.0010,−0.0005}. One can see that one of the eigenvalues
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Figure 4. Analytical results of the prediction error, εp (dashed line), as obtained from equation
(13) and the generalization error, εg (solid line) (taken from [9]), as a function of α for γ = 40
and ε = 0.2. Simulation results of εp (circles) and εg (triangles) are averaged over ten different
runs with N = 1000. Error bars are smaller than the symbols.
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Figure 5. Analytical results for λ for several values of γ having η = 1 and ε = 0.2/0.0001
(triangles/circles). Lines are linear curves fitted to the logarithm of min |λ| as a function of ln(γ );
their slope is ∼2. Inset: analytical results (circles) of ln εg as a function of α for γ = 40, ε = 0.2
and η = 1. The slope of the linear curve fitted is ∼0.0009.

is relatively small, i.e., it will take a long time—many examples—to get perfect generalization.
A semi-log plot of the generalization error as a function of α in the specific example above
is plotted in the inset of figure 5. A linear curve fitted to the analytical result has a slope of
∼= 0.0009 which is of the order of the smallest absolute eigenvalue, as expected. The values
of the smallest absolute eigenvalue for ε = 0.2 and ε = 0.001 and various γ values, as found
from the asymptotic expansion of equations (11) with η = 1, are given by the log–log plot
in figure 5. It is apparent that as γ is increased it becomes practically impossible to achieve
perfect learning. Fitted linear curves for ε = 0.2 (dashed line) and in the case of ε = 0.001
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(solid line) indicate that the slope is approximately 2. Their smallest absolute eigenvalue
obeys a power law, min|λ| ∝ γ −2.

5. Discussion

In summary, we found that in a manner similar to the learning procedure of time series, when
a student tries to learn from a teacher but is restricted to a specific input spectrum in which at
a certain region the inputs are enhanced, the learning does not end in perfect learning within a
reasonable time. However, that same enhanced region can be learned perfectly. The parallel
drawn between these two cases is clear when comparing the inset of figure 1 and figure 3.
One can see in both cases poor performance of the overlap between teacher and student where
in both cases the student seems to be stuck. However, the student can learn a certain region
as indicated by ρ1, the dashed line in figure 3, and by the stars around k = 20 that show the
performance of the student in the Fourier regime (figure 1).

In the case of time series QPSs, the two regions are of the order of 1 and 1/N . The
adaptation of this result to our toy model results in γ ∼ N . Therefore, by extrapolating
the analytical model results to infinitely large γ of the order of N, we can estimate that the
exponential decay of the generalization error scales with α ∼ N2 and the number of required
examples to learn the sequence is O(N3). This estimation might serve as an explanation
for the observation in [5], regarding batch learning. In the case of a monotonic activation
function such as ‘tanh’, one may think of the alternative approach of inverting the matrix as
a suitable way of finding the teacher’s weight vector. Note that the complexity of inverting
the matrix also scales with O(N3) as was already mentioned in [5]. It turns out that even
professional computer routines often fail to perform the required matrix inversion: the patterns
are almost linearly dependent. The toy model presented in this paper might explain this partial
dependence between inputs.
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